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SINGULAR PROBLEMS OF THE THEORY OF ELASTICITY FOR CRACKS PERPENDICULAR TO
THE BOUNDARY SEPARATING TWO MEDIA™

N.D. ZHEKOV and V.D., KULIEV

The Wiener-Hopf method is used to construct exact solutions for the
problems of cracks perpendicular to the plane boundary separating two
different, homogeneous isotropic elastic media. The solutions are
constructed for the follwoing cases: semi~infinite cracks with the tip
situated at a finite distance from the interface {(a normal fracture
crack is covered in problem A and a longitudinal shear crack in problem
C): a crack of finite length with one of its ends lying at the interface
(a normal fracture crack is covered in problem B and a longitudinal shear
crack in problem D).

Prcblem B was solved earlier in /1/. A different method of
factorization /2—5/ used below leads tc a relatively simple construction
of the solution for problem B, and also for problems 4, C, D.

1. Formulation of the problem. Let two isotropic, homogeneous elastic half-spaces
with different elastic properties be rigidly bonded to each other along the plane z=0. A
crack of length ] is situated along the negative part of the r axis at a distance h from the
interface. This problex was solved in /6/ for a body of finite linear dimensions using the
method of finite elements. Below we describe two limiting cases of this problem: a) [— o0
(problems 4, C for normal fracture cracks and longitudinal shear cracks respectively, figure
aj;

b} #—0 (problems B, D =alsc for normal fracture cracks ané longitudinal shear cracks
respectively, figure b).

We assume that the values of the elastic constants E,. v; for the first material are
specified in the left-hand half-plane (for z < @) arnd in the right-hand half-plane {(for
2> 0y E,, ¥, are givern for the second materia.,

The bourdary conditicns for problems 2 and B are

8= =2 fud =lul=0 lo] = 14l =0 (1.3
8 = 0, Ty = . ug = G
8 = - Tt == {
and we also have
= —n 0Zr<h ug =10 .2
r>h. og =0 for problem 4
g=—n 0Lr<l o,(2)=—0(2) (1.3)

r> 1 u, =0 for problem B

The boundary conditions for probliems C ané D are

8 = -+ 2, loga] =0, lwl =10 (1.4
8=0 w=0
andé we alsc have
8= Ln, r>h 0Ogg=20 {1.5;
0<r<h, w=0f£for problem (
6 =n, 0Lr <1 Goy = 1(2) (1.6)

r>1, w=0 for problem D
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In addition to the conditions (1.1), (1.2}, {1.4), (1.5) we specify a conditionas r— o
for problems A and C. It is clear that when h—0, we arrive at the Zak-Williams problem /7/.
When Aot 0, the exact Zak-Williams solution must be realized in the form of a given asymptotic

form as r > oo,
For problem A we have /2, 7/
oo = K°[{2 + A) cos AB + B cos {2 + 1)8) (1.7)
op = K°1{2 — M) cos A8 — Beos (2 + )6}
Ty, = K° [ sin A6 + B sin (2 + 48], —n/2 L8 /2
- . — 24} — (2A% 4 5} - 2)
S sinpn 2O @D L n2Ln

Be o [(2+ 3k — (1 + 20 s+ 1 + 4]

T+ %

and for problem C we have
Ggs = Ki° cos (8 + 1)8, 0,s = Kyi®sin (8 4 1)8, 101 n/2 (1.8)
e Ky e, =1

s
By -1
&

Ko = Kpvg ——eee
111 I3 m

Here K;, Ky are the stress intensity coefficients assumed given for the above problems,
Og. O,. Trg, Og3, 0,3 are the stresses, v and u are Poisson's ratio and the shear modulus respect-
ively, and . is the unique, real root of the eguation

cos ik =qa + b {n + 1)? {1.9)
(o 2 Dk — Dy — hy = 1 %
- Th—F oD ° Ic;+1)

lying in the interval (—1,0). The degree of singularity of the stresses § is determined by
the formula

8 = —2atarclg 1k (—1 << 6 < 0) {1.10)

In the case of problem B and D, the stresses tend tc zero as 71— oo.

The solutions of the problems of the theory of elasticity sought here must satisfy the
boundary conditions (1.1)— (1.6}, and conditions at infinity. The following asymptotic form
must be realized near the ends of the cracks (e<& i)

1
Tgiry V) s e £=1-——}‘ . 3
o(r 1) Wi (1.1
8 Vo 2~k
ue(’r‘x) P ,ZX_)I' gasr—1
ar E} 2ne
for problem A (R; is the stress intensity factor to be determined), and
Lats:
Cgg === = =, g7 (1.12}
s V2
P 5
dw (r, nt) — 1!‘1 P
ar w2

for the problem C.

In the case of problems B and D, the corresponding asymptotic curve must be realized
for cracks perpendicular to the interface, near the tip of the crack lying on the interface:
relations (1.7) are taken as the asymptotic expression for problem B at the crack tip, and
(1.8) for D; for the other tip of the crack not lying on the boundary, we use relation (1.11)
for B and {1.12) for D.

2. Derivation of the Wiener-Hopf equations., pProblem 2 and B. Applying the
integral Mellin transformation /8/ to the eguations of equilibrium and compactness of the
plane problem of the theory of elasticity, we arrive at the fourth-order ordinary differential
equation /B/ whose solution will be sought in the form

0% (. 8) = 4, cos (p + 1)8 + A, cos {p — 1)8 + (2.1}
Agsin{p + 1)8 + Asin (p — 1)8, 0L 82
og* (D, 8) = B, cos (p + 1)0 + By cos (p — 1)0 +
Bgsin(p -~ 1)8 + B,sin (p — 1)8, nf2 8 =
{4i. B; are unknown functions of the parameter p). The functions o,* and 1,4 are given in
terms of ogg* as follows:

* g dsg® 1 dts*
Te=gTT @ Pt =TT me o 2.2
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Applying the Mellin transform to Hoocke's law we obtain
éu 14 v;
( ) —'“E“"‘{(i““";)ar — vag*] {2.3)
du i + v das,
(--5;0-) =m [2PT,~9+ J) ""V,""‘%‘} j=1w2
Using (2.1)-1(2.3), {1.1) we obtain a system of eguations in 4, B
solution of this system in the form
As = A. =0
Ay = By (ks + 1)k, Uy ~ kg}{(2p + 1)sin pn]=?
By = B, {2k, (p cos prn — sin? pn/2) — 11k, (2p + 1) sin pa}™?
= By ks — k) 2p + 1) + p Gy + DA (p) sin pn]™

By = By 12k, (ky — k)(p <+ 1){(p cos pn ~+ sin® pn/2) —
(ky + t)cos pat -+ (k) — k)p + 2 sin? pn'2)0A (p) sin pnl™t

By = By {(k; — k)lkap 2p + 1) — ey + D] — (ks + DHA ()12
Ap) =k by — k)(2p + Dp — 1)

We shall write the

(2.4}

In accordance with {1.2) and (2.1)={2.4), we now arrive at the homogeneous Ffunctional

Wiener-Hopf eguation for problem A

(F+ 3+ DO (p) = Yol (D)KL ()D& {p) (2.5)
4 £ i Fug N
Dy (.P):“Wg(?)ems”ds (2.6)

b3
i
Da(p)= S (Op)owns® ds
s(p)mctgr—sm*p%tg(p+ A1)y (p)]™
Ki(py==(p~h+1ctg{p + 1+ 4n
byt (2.7

s a 1Y k;
V(p) =S P~ P T~ T R =R
The function @4~ (p) is analytic in the right-hand half-plane Rep > —1, and the func-

tion @u* (p} is analytic in the left~hand half-plane Rep < —~(* 4 1)
Using (1.3) we obtain, in the same manner as {2.5), the Wiener-Hopf equation for problem B

(e 1@y (p)=Ca(p) Ka (p) [F5(p) + ©5™ (P)] 2.8)
AT ¢
where
1 . o
_— E Y 0“9 P e '] y
L (P)=—,;(-r:;:"m'\ ( 7 Jomn S S S {G6)ern s¥ ds 2.9
1

B

Gy (p)=cig po-sin* p - 1g (~—~—T~r~1> {ym]™

1
Ko(p) =1\ 7=7 = 1w 52y +1)F- Fa(p)=\ o,(5)s" ds
2 i v ‘6

The function ®p~ {p) is analytic in the right half-plane Rep > — (A + 1). ©p* {p) when

Re p <2 0.
problems C and D. The Wiener~Hopf equations for problems ¢ and D are obtained exactly
Applying the integral Mellin transform to the relations of the theory of elasticity

/5/, we obtain asecondworder differential eguation and seek its solution

W o= A4, cos pf = A, sin p8, 0 6 L 0’2 (2.10)
W o= B,ycospf — Bysinp8, n'2 L O

as before.
for complex shear
in the form

” wf‘—:—-‘*) _.—\—d?——rpdr
B, are functions of p to be determined. The functions a,* {p, 8), g™ (p. 8) are

Here 4.
in the form

written in terms of W {p, 0)
: i 4 2.1
=W, o =—t T (2.11)
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Conditions (1.4) yield a system of equations whose solution will be

Ay=0, A, =B, B, = 2B, (k sin® pn/2 + cos *pn/2)[(k — 1) sin pn]~! (2.12)

2k
{k — 1) sin pn

Further, using the conditions (1.5) we obtain the Wiener-Hopf equation for problem C

Ke (90 (p) = (p + 8 + 1)Gc (p¥®c* (p) (2.13)
where
1 o
O (p) =\ @ohmnds. O (p) = {(S),__ 575 (2.14)
[] 1
. (ktgrpa2 — 1tz (p+ b= 1)
G:(p)= F =g oz

Ke(p)=(p+8-+1)ctg(p+ 6+ 1)n
The function @g* (p) is analytic in the left-hand half-plane Rep <08 — 1, and @¢~ (p)
is analytic for Rep> — 1.
Problem D. Introducing the functions

o«

1 s
o™ (p) =11 | (%)e:.«sﬁ ds, ®p*(p)= 5 (06s)e=ns” ds (2.15)
4
we obtain from (1.6)
Ky () [®0* (p) + Fo (o)) =3 (557 +1)6p(p) @o™ (p) (2.16)
where
1) -1
Gu={\ftt g* —3— }(‘tg( —’i -21- bk —1)tigp= :I (2.17)
KD(P)=_;'<62 ~—1>Ctg(——-—»1)—§-. Fp(p)=g'r(s)s’°ds
0

The functions ®p*(p) and @y~ (p) are analytic for Rep< 0 and Rep> — 6 — 1 respectively.

3. Solution of the boundary value problems. rroblem A. The Wiener-Hopf equation
(2.5) is valid within the strip —i<{Rep<{— (A+1), —o0o < Im p<Jco. The function G, (p) has
the following properties: it is regular and has no zeros within the strip —t1<CRe(p)<{ — (3 —
1). provided that k<{1. When k>1, the function G4 (p) is regular and has no zeros within
the strip — A+ %)< Re(p)< — (.~ 1). ¥When Im(p)— -+oc Re{p) = —2 —1,6,(p)— 1. The
functior. ¢ (p) has a first-order zerc at the point p=—(} + 1), and the zerc of this function
is a root of the characteristic equaticn (1.9).

Let us denote the regions situated tc the left and right of the contour L, (Ly: Rep = =
(. +1), —oc < Imp< o) by D* and D-, respectively. The function G4 (p) can be written in
the form /9, 10/

G4 (p) = Ga~ (P} G4~ (p) (3.1)
1 ¢ lmG, @ IGA‘(p), r= Dt

exXp | = \ ~—m———di | == - _ (3.2)
k2 L-\A =74~ peb

The functions G4* and G.~ in (3.1) are analytic, have no zerocs in the regions D* and
D-, respectively, and tend to unity as p-—>o0. We use the following representation in
factorizing the function K4 (p):

Kilp = KA‘ (P K4~ (p) (3.3)

l-r(P-“’L—Li)}
E‘A"(p) 2*(? A‘Y‘”}

where T {p} is the gamma function.
The function K4*(p} is regular and has no zeros when Rep <— (% 4+ ¥;), while the func-
tion K,~{(p) is regular and has no zeros when Rep > — (i + ¥,). Moreover,

Kat(p)~VSp+o(l) as p— oo (3.4)
Using the representations (3.2), (3.3) for (2.5) we cobtain

(8 + A+ 1) D, * (p) 1 Ko
v - 3.
K06, () TG P4 (P) (3.5)

The left side of this equation is analytic in D°® and the right side is analytic in D-.
According to the principle of analytic continuation, these sides are egual to unity and the
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same function analytic in the whole plane. To find this function we determine the behaviour of
the left and right sides of (3.5) as p-» . Let us inspect the behaviour of the unknown

D, (p) and @4 (p) as p— oo. According to the Abel-type theorem /10/ we obtain, as p - o,
with the help of (1.11),

Dy ()~ e s Bp* (p) e — e (3.6)
A V»‘-E} s A 2V”:'_2-‘-P (.00
Taking intco account {3.2}, (3.5) we obtain
kG (p) A ()G P
Oy ()= AL @y (py= i BT P
4~ {p) VIR, r) 47 () 2V2(p~h+1) (3.7)
The solution (3.7; contains the parameter Kk which must be obtained from the condition
(1.7).
Using (1.7) we have, by virtue of the Abel-type theorem (p — —i — {)
[ fue " g Q=) G- einaa[B(8 + 2h) — (238 5h - 2] (3.8)
\ar 151‘/“3'_2{ (A2 = A) = SiREAn,2] {p =~ A = 1)
On the other hand, from (3.7) we obtain
o ) TEVE (e E=T (3.2)
Equating (2.8} and (3.9) and changing to dimensional coordinates, we obtain
. . (= t)sinis = 20} — (D2 — BL e 2)] KA
Kia = K, (7 in 270 [B (3~ 20} ~ (27, 87— ] KT (3.10)

T = 1) — Sf AR 64 (— k= 1)

Problem B. The Wiener-Hopf eguation of problem B (2.8) is defined in the strip —A — 1
Re p <£ 0. The function Gp{p) (2.9) has the following properties. It is regular and has noc
zeros within the strip of definition of the egquations. Moreover, as was shown before, when
lmp——o0 Gp (p)— 1, then y(p) has a first-order zerc at the point p = —(4 +1). We shall

denote the regions situated to the left and right of the contour Lg{lp: — {» + 1) K Re pg 0,
—oo < Imp < o), by D™ and D*. Then Gp can be written in the form /9, 10/
Gy (p) = Gg~ (p)Gs™ (p) (3.11)

Here Gp (p} ané Gy {p) are obtained in the same manner as Gu*(p), but using &p (p)
and taking intec account Ly, The function Kg{p} can be written, like (3.3}, in the form

Ky {p) = Kp~ (P)Ap (p) 1 1 {3.12)
- 1 A2 i B 14 -
ket =T 12 {rky <) (7 [+ 53 (2 <]
Using (2.11), {(3.12) we obtain from (2.8}
, Qg Gy . e _ - <
{5 £ -1) BA-B,HW = Fg(p) Ae"(p)Gs* () — K™ ()G () P5™ (p) (3.13)
Let the function
Yy (p) = Fp (p)Ry (P)Gs" (P) P (3.14;
be such that
Yy (p)="4s"(p)— ¥ (p) (3.15)
(et Ae 0T 0 ) Y pELT (3.16)
S L ¥a () p=1I7
p=h—1 P @ CGpmp) (3.17)
PO T Ky 1E ()=
- R {p) Gg*ip) Pt (p)
¥5 (p) — — Bp £ {(p= Ly}

From {1.1) it follows that ®p~ {p) has a first-order zero at the point p = {0, therefore
the left and right side of (3.17) represent the analytic functions D~ and D* respectively.

Using Liouville's thecrem we obtain

R P~ ¥ (1) Ky () P P¥g* (P) (3.18)
Qg™ (p)=— [ W VY FCNY TR @5 (p)-—“m }

To find the stress intensity coefficient at the right end of the crack we shall use the
asymptotic relatior (3.9) obtained earlier (with the sign changed). Separating from
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dug/dr ©p~ (p) according to {2.9) and equation with (3.18) we obtain, after changing to dimen-
sional variables,

SY2[M(2+A) + sindAn/2) ¥y (—A— 1)

- 3.19
Ky 1" sin A [B (3 + 24) — (242 -+ 5 + 2)] ( )
where
- 1 ¥p 1)
Yy {""”’!)z’ﬁ?LS T (3.20)
B‘

{(Lp* *Rep = —i 1, —00 <Imp < o; the point p=-—h — 1 is passed on the left side along a
semicircle of small radius with centre at this point).

Let us determine the stress intensity coefficient at the left end of the crack. From
the Abel-type theorem /10/ we obtain, using (1.11),

kI
() e ek (p—> {3.21)
@5 (p) Ve (p— o)
On the other hand we have from (3.18), as p— x

%‘(p)zi‘;}—g’—ga(c) (p— oe) {3.22)

where
1 “icc
g5 (0) = o ( Kg* (8)Gs™ () Fa (t) dt (3.23)

—ioe

Equating (3.22) and (3.21) we obtain, after changing to dimensional coordinates,

By = =2V 1T(1 + Ags (o) {3.24)

Problems C and D, In the case of problem C the Wiener-Hopf equation (2.13) is factorized
just as in problem A. As a result we obtain

k
D= () = — o T (3.25
P == R e )
R K e (9 & T1=ip—08=1)]
b e i 1 K B am———
Vap—&—106:p) <) s+

Gp(t (). .
exP{zis \ o) 1 _[67p) p=D
L

Dt {p)=—

¢ =P T 6 pED
Using the Abel-type thecrem /10/ we obtain from (1.8), just as in problem A, a relation
connecting Ky and ki
ke = KmnGe’ {(— 6 — 1) 14" {3.26)
After factorizing the Wiener-Hopf equation (2.16) of problem I carried out as in the case
of Eg.{(2.8) of problem B, we cbtain

P¥p* (21 Gt (P)

+ — — -
Tp* (p)= ) : (3.27)
i DK (p) G () ¥y (P
Po”(p) =~ p—6-1
1 ¢ InGp(t) T (G (p) p=ED
XD | o \ i | 2=
[2:{1 }é} 1—p j XGD_(‘D)« p=D- (3.28)
{(lp: —8 =1 Rep <0 —oLImp< x)
v — T4 » S 1 1, p [ R
Kot (p)=T |15 (57 =1)] (T |7 7 7 (x5 1))
1 FrityKp*it) [ Yo (pp p=D
— ——--—a—-:-—— = . —
2 5 T —p G 1‘}1) (o) P‘f“—:D
Further, using (1.8) we obtain for the right tip
Kmypy=21"2(6 + 1P 10 p (— 6 — 1)Gp™ (— 65— 1) (3.29)

. 1 * FpltyAp™(t)
¥ (_6“1)‘”2&7“‘,\ TE=0=1G,7()) dt
Dt
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(the contour Lp* coincides with Lp*, after formally replacing A by 6).
Using (1.12), we obtain the following expression in dimensional variables for the left
tip of the crack:

1 TR0k
by =—2V 8+ Digo(1). £o(1)= S b ot (3.30)
A p* (¥)
4. Analysis of the solutions obtained. Let us consider special cases of the

general solutions of problems 4, B, C, D.
Let k=1 k,=1. Then from (3.10) we obtain
kray = K;
Let k=14,% =1,0(1) = 0= const. Then from (3.19), (3.24) we obtain
kg = Ky = oV alZ
Similarly, for problems C and D we obtain, for &k=1,k=1,

ki) = Km
from (3.26) for problem ¢, and

by = Kpepy = 1V a2

for problem D from (3.28) and (3.30) for t(z) = t= const.

We note that in /11, 12/ the solution of problem B was reduced, using the integral Mellin
and Fourier transforms, to singular integral first-order equations, with a Cauchy kernel.
jumerical methods of solving the analogous problems using integral equations are developed in

13-15/.
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