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SINGULAR PROBLEMS OF THE THEORY OF ELASTICITY FOR CRACKS PERPENDICULAR TO 

THE BOUNQARY SEPA~TIN~ TWO MEDIA* 

N.D. ZHEKOV and V.D. KULTEV 

The Wiener-Hopf method is used to construct exact solutions for the 
problems of cracks perpendicular to the plane boundary separating two 
different, homogeneous isotropic elastic media, The solutions are 
constructed for the follwoing cases: semi-infinite cracks with the tip 
situated at a finite distance from the interface (a normal fracture 
crack is covered in problem A and a longitudinal shear crack in problem 
C) : a crack of finite length with one of its ends lying at the interface 
(a normal fracture crack is covered in problem B and a longitudinal shear 
crack in problem I?). 

Problem B was solved earlier in /l/. A different method of 
factorization /2--5/used below leads to a relatively simple construction 
of the solution for problem 3, and also for problems A, C,D. 

1. Formulation of the problem. Let two isotropic, homogeneous elastic half-spaces 
with different elastic properties be rigidly bonded to each other along the plane z = 0. A 
crack of length 1 is situated along the negative part of the I axis at a distance h from the 
interface. This problet was solved in /6/ for a body of finite linear dimensions usinq the 
method of finite elements. Below we describe two limiting cases of this problem: a! l+m 
(problems A,C fcr normal fracture cracks and longitudinal shear cracks respectively, figure 

al: 
bj h-0 

respectively, 
(problems B.D alsc for normal fracrure cracks and longitudinal shear cracks 
figure b). 

We assume that the values of the eLastic constants El. rl for the first material are 
sperifred in the Left-hand half-plane (for J<CI) and in the right-hand half-plane (for 
J> 0) E,. r? are giver. fcr the second m:et,el-;a_. 

The boundary conditicns fcr problems X and B are 

and WE also have 

The boundary con%%ions for prcb;ems C and D are 

e = 2s 2, (oe31 = 0, fz@l = 0 11.4: 
4j=-o,ru=o 

and we alsc have 

0 = 5%. r > h, c1e3 = 0 il.51 

O<T < h, w = 0 for problem c 

e = *a. 0 < T < i, Ise3 = ? (?) (l-c-! 
r > I, w = 0 fcr problem D 



1n addition to the conditions (l.l), (1.2), (l-4), (1.5) we 
for problems A and C. It is clear that when h+O, we arrive at 
When hf0, the exact Zak-Williams solution must be realized in 
form as r-+oD. 

For problem A we have /2, 7/ 

06 = 1y" I(2 + k) cos ho -I- B cos (2 + _y 

and for problem C we 

4 = K" ((2 - hf CDS ?& - B eOs (2 _+ k)e)_ _ _ 

301 

specify a conditionas r--, 00 
the Zak-Williams problem /7/. 
the form of a given asymptotic 

(1.7) 

(I.81 

Here KI, KTII are the stress intensity coefficients assumed given for the above problems, 
09. 0,. rre, OES? 0,s are the stresses, f and p are Poisson's ratio and the shear modulus respect- 
ively, and I. is the unique, real root of the equation 

cos ni. = a + 6 (i. + I)2 (1.9) 
2 - ?k,kz - Zk, - kz L I 

1(ks--kkl)(k,Tl) , b=*) 

lying in the interval (--1,O). The degree of singularity of the stresses 6 is determined by 
the formula 

6 = -2n-'arctg 1% i--i < 6 < 0) (1.10) 

In the case of problem B and D, the stresses tend tc zero as T-+ 00. 
The solutions of the problems of the theory of elasticity sought here must satisfy the 

boundary conditions (1.11-(3.63 t and conditions at infinity. The following asymptotic form 
must be realized near the ends of the cracks (e&l): 

for problem A (Kl is the stress intensity factor to be determined), and 

for the problem C. 
In the case of problems 3 and D, the corresponding asymptotic curve must be realized 

for cracks perpendicular to the interface, near the tip of the crack lying on the interface: 
relations (1.7) are taken as the asymptotic expression for problem B at the crack tip, and 
(1.8) for D; for the other tip of the crack not lying on the boundary, we use relation (1.11) 
for B and (1.12) for D. 

2. Derivation of the Wiener-Hopf equations t Problem A and B, Applying the 
integral tillin transformation /8/ to the equations of equilibrium and compactness of the 
plane problem of the theory of elasticity, we arrive at the fourth-order ordinary differentia 
equation /S/ whose solution will be sought in the form 

uB* cp,e) = A~ cos Q + qe + R* cos (p - i)e + (2.1) 
A&n (p + l)e i A&n (p - I)@, 0 g 8 f x2 

ue+ (p. e) = B, ~0s cp + i)e + 13, cos @ - t)e + 
Bs sin (p 4- i)e i 8, sin (p - l)@, 3112 < 8 < n 

641, Bi are unknown functions of the parameter p). The functions cr,* and srft* are given in 
terms of Ue' as follows: 
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Applying the Meilin transform to Hooke's law we obtain 

da * da@* 
2PT%+(i-Vj)*-Vj~ j=f,2 

l2.3) 

Using (2.1)--12.3), (1.1) we obtain a system of equations in Ar,B1. We shall write the 
solution of this system in the form 

A S==A,=O 
A, = B$ (k, + I)&, (& - k,)(2p + ifsin pm]" 

12.4) 

B, = B, 12kl (p cospn - sin*pnE) - aIlk, (2~ + I)sin j~nl-~ 

Al f B, @i* - k&Q + i) -6 p (k, -I- 1)11A C_p) sin pnl-' 
B, = BI t21zI (k, - k&p i i)(p cospn -I- sin*pn:2) - 

(k, -t l)cos p” -+ (k, - k&p + 2 sin2 pn ‘2)HA (p) sin pnl-’ 
B, = B, 4% - k#w 6% -I- 1) - @k, -I- %)I - @I -+ Ij)lA @)I’” 

A fP) = ii, F, - ~*)cQ + f,fP - S) 

In accordance with (1.2: and (2.1)--(2.4:, we now arrive at the homogeneous functional 
Wiener-Hopf equation for problem A 

(P i- 2. i lP.4'@1 = r/&%4 (PK* (p)at,- (PI i2.5) 

(2.6) 

The function Q,-(p) is analytic in the rlght-hand half-plane Rep> -1, and the func- 
tion taA+(pj is analytic in the left-hand half-plane Rep < -(i, -i- 1). 

Using (1.3) we obtain, in the same manner as !2.5), the Wiener-Hopf 

where 

equation forproblemB 

The function @s-(~j is anaiytic in the right half-plane Rep> -(h + f).@e'(p) when 

Rep <o. 

Problems C and Il. The Wiener-Hopf eguatlons for problems C and D are obtained exactly 
as before. Applying the integral Mellin transform to the relations of thetheoryofclasticity 
fOX complex shear /5/, WE obtain asecond-order differential equation and seek its solution 
in the form 

(2.10) 

Here At, B, are functions of p CO be determined. The functions u,~* (p,@. ue3* (p,@j are 
written in terms of FV(p,0) in the form 

(2.11) 
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Conditions (1.4) yield a system of equations whose solution will be 

Al=07 A,=‘~(k_l~inp~ B, = 28, (k sin2 pn:2 + cos *pn’2)[(k - 1) sin pnl-’ (2.12) 

Further, using the conditions (1.5) we obtain the Wiener-Hopf equation for problem C 

KC (pP,- (p) = (p + 6 + 1% Wk+ bf 
where 

@s-(p)= \(U9&_$% @c'(p)= Irl~(-g)8=n3ds 

(BW pn’? - 1) ctg (p - 0 - 1) 
1 

6 (P) = (k--l)ypn:2 
&(p)=(p+64 l)ctg(p+fi+- l)TI 

me function c&+(p) is analytic in the left-hand half-plane Rep<--6 - 1, 

is analytic for Rep> - 1. 
Problem 13. Introducing the functions 

m,(,)=~lJ(a,.-~S'ds. ~D’(p)=~@tdfJ=n~p~~ 

we obtain from (1.6) 

k‘,(p)[@D+(p) i fo(P)] =&+-i + ~)Gn(P)@D-(p) 

where 

GU =(” tg2p+ -,)ctaj~-l)~[(k-1)tpP~j-l 

hdP,=+(& -I)ctg(.J.+ _-1)-g, FD(p&)s%iS 
0 

The functions &+(p) and Q,-(p) are analytic for Rep<0 and Rep> - 6 

(2.13) 

(2.14) 

and @c- (PI 

(2.15) 

(2.16) 

(2.17) 

1 respectively. 

3. Solution of the boundary value woblems. Froblem A. The Wiener-Hopf equation 
(2.5) is valid within the strip -I<Rep<-(i-if), --<Imp<co. The function G_,(p) has 
the following properties: it is regular and has no zeros within the strip -i< Re (p)< - (A - 
1). provided that k<l. When k> 1, the function GA(p) is regular and has no zeros within 
the strip -(h+5/,)<Re(p)<-(i.-1). When Im(p)--+-@c Refp)= -).-I,GA(p)--fl. The 
function v(p) has a first-order.zerc at the point p=-(Z, T I), and the zero of this function 
is a root of the characteristic equaticn (1.9). 

Let us denote the regions situated tc the left and right of the contour LA (LA: Rep = - 
(i. + I), -02 < Im p < 00) by D’ and D-, respectively. The function GA(p) can be written in 
the form /9, lO/ 

GA (Pf = GA- (~1 GA- (~1 13.1) 

(3.2) 

The functions GA* and GA- in (3.1) are analytic, have no zeros in the regions D+ and 
D-, respectively, and te.nd to .u?.ity as p-*03. We use the following representation in 
factorizing the function KA (p): 

KA (P) = KA* b)KA- (P) (3.3) 

where r(p) is the gamma function. 
The function &J+(P) is regular and has no zeros when Rep<-@ $- Ii,), while the func- 

tion K,+-(p) is regular and has no zeros when Rep> - (i.+ sir). Moreover, 

KA* (p) - 1/p + o (1) as p + 0~ (3.4) 

Using the representations (3.2), (3.3) for (2.5) we obtain 

(P’Gl)@,d(P) 

xA+ (i’) GA+ (P) 
=++$@A-@) (3.5) 

The left side of this equation is analytic in D' and the right side is analytic in D-. 
According to the principle of analytic continuation, these sides are equal to unity and the 
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same function analytic in the whole plane. To find this function we determine the behaviour of 
the left and right sides of (3.5) as p-+ 00. Let us inspect the behaviour of the unknown 
aA+@) and (DA-(p) as p-00. According to the Abel-type theorem /l.O/ we obtain, as p- OC, 
with the help of (1.11), 

Taking into account 13.2), (3,5) we obtain 

@.4_(p)= 
k,G,_(F) !+-A+ (F) GA+ i.~) 

62’ 
@A+ @) = 

21/Z(PTh~i) 
(3.7) 

The solution (3.7) contains the parameter kl which must be obtained from the condition 
(1.7). 

Using (1.7) we have, by virtue of the Abel-type theorem (p----i,- f) 

On the other hand, from (3.7) we obtain 

i 
“%\*_* Z(i-\,,q GA+(-h-f) 
7’ - ‘-Qz- (P-k-1) (3.9) 

Equating i3.8; and (3.9) and changing to dimensional coordinates, we obtain 

K iiAN== 
Kl (i. .- f) sin .Xx [B(3 - 21.) - (2X$- 5i - 211 lii+'ir 

2 [j. (2 - 2.) - sin*i,nill GA- (- x - 1) i3.10) 

Problem B. The Wiener-Hopf equatron of problem 3 (2. 8) is defined in the strip -_j, - 1< 
Rep <O. The function Gs(p) (2.9) has the following properties. It is regular and has nc 
zeros within the strip of definition of the equations. Moreover, as was shown before, when 
Imp-*oo Gfj @)--+I. then u(p) has a first-order zero at the point p = -(i. if). We shall 
denote the regions situated to the left and right of the contour Ls (LB: - (A-+ 1),< Rep,< 0, 
--M < imp < cc), by D- and D’. Then GB can be written in the form 19, 10,' 

GB (P) = Gs- (PFGB- (Pi (3.13) 

Here GBA(pj and G,-(p) are obtained in the same manner as GA*@j, but using 6% (P) 
and taking into account Ls. The function fin can be written, like (3.31, in the form 

Kt, f,d = KB- (i-‘!h’~- (P) 
(3.12) 

KB*(P)=r ,.ii -&.i+ -- 

Using i?.lij, i3.1-3) we obtair, from (2.6: 

From (L.1) rt follows that @I,-(p) has a first-order zerc at the point p E#, therefore 
the left and right side cf (3.17) represent the analytic functions D- and D+ respectively. 
Using Liouville's thecrem we obtain 

~,-(p)=_p(~~~~:w_B;:~)fi~~~(p), @a* (P) - - 
PY’B+ m (3.i6; 

5 li,+ (PJ G,+ fP1 

To find the stress intensity coefficient at the right end of the crack we shall use the 

asymptotic relation (3.9) obtained earlier (with the sign changed). Separating from 
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~ae;ar@s-fP) according to (2.9) and equation with (3.18) we obtain, after changing tc dimen- 

sional variables, 

x 
4 

l(B)= - 
2[5(2 + A); siaahx/21 

t” sin An fB(S + W)-_(2).* -r 5X + 2)I 
YIB-(-h- 1) (3.19) 

where 

(3.20) 

(La*:Rep=--h-I,-oo<Imp<oo; the point p z-k-- 1 is passed on the left side along a 

semicircle of small radius with centre at this point). 
Let us determine the stress intensity coefficient at the left end of the crack. From 

the Abel-type theorem /lo/ we obtain, using (1.11), 

13.21) 

On the other hand we have from 13.18), as p+ce 

&3-(P)=$&IJo fp-"+ext) 

where 

+ia 

m)=& c KB’ ft) f&s* (f) FB @i df 

-L 

(3.22) 

(3.23) 

Equating (3.22) and (3.21) we obtain, after changing to dimensional coordinates, 

k I iB) = --2fI-fpT)g4 (0) (3.24) 

Problems C and D, In the case of problem C the Wiener-Hopf equation (2.13) is factorized 
just as in problem A. As a result we obtain 

@c- iPI= - 
kIIl(C~ 

?Z&-- (P)Gc- iP) 
(3.25) 

hto~c’ 0)) 

“+ @) = - v’& 7 b - 1) G,' (p) ' 
r[t=@-bbL11] 

Kc*~p~=f(~,,(p-~fl)J 

I 
f?SP 

I c 
G,(k) 

x 
&l=/ Gc'fpl* PSI)" 

& 
i"i; e! \ G.--Q), p.c=D- 

Using the Abe1 -type theorem /LO/ we obtain from (1.8!, just as in problem A, a relation 
connecting Kill and ~,II 0 

hilrrcc, = Ku&c+ (-- 6 - 1) /Ih-',* (3.26) 

After factorizing the Wiener-Hopf eg;ation (2.16) of problem C carried out as in the case 
of Eq. (2.8) of problem 3, we obtain 

@Jfi+(PI=- 
F~,'~P)C," (P) 

h,'(P) ) 
(3.27) 

Qn-(p)=-2P(*T l)K,-(NC,- IP! Y'," (~1 
(P--b 1) 

1 
esp 

f \ 
' 'mtC$ + G,‘(P). PEE’* 

2ni, 
LL, 1 f&-Q+ FED- 

(3.28) 

(LB: -+!I-f<R~ep<O, --<Imp<%) 

K&(p)dp+--j-& -~~J~~i-+&-&--i~]~' 

& g ~~~~~~~~~~~~~ db_[ y;; ,"'; 

LLl iJ > Ei 

Further, using (1.8) we obtain for the right tip 

(3.29) 
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(the contour LD* coincides with 
Using (1.121, we obtain the 

tip of the crack: 

LB*, after formally replacing h by 6). 
following expression in dimensional variables for the left 

+i@u P, (I) Pi,+ (f) 
hIlw)=--f-&'D(T), go(T)=&- 1 

fG,+ V) 
dt 

-iar 

(3.30) 

4. Analysis of the solutions obtained. Let us consider special cases of the 
general solutions of problems A,B,C,D. 

Let k= l,k,= i. Then from (3.10) we obtain 
k I(A) = KI 

Let k= <, k,= 1,0(r) = o_=const. Then from (3.19), (3.24) we obtain 

k l(B) = qfl, = a)/nm 

Similarly, for problems C and D we obtain, for k=l,k2=i, 
k III(Cl = &II 

from (3.26) for problem C, and 

k II,(D) = %I(D, = ‘vrn 

for problem D from (3.29) and (3.30) for t(z)=~mcoaat. 
We note that in /ll, 12/ the solution of problem B was reduced, using the integral Mellin 

and Fourier transforms, to singular integral first-order equations, with a Cauchy kernel. 
Numerical methods of solving the analogous problems using integral equations are developed in 
/13-15/. 
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